Problem Sheet 1

1. Let $\Omega=\{1,2,3\}$. Let

$$
\begin{aligned}
\mathcal{F} & =\{\emptyset,\{1\},\{2,3\},\{1,2,3\}\} \\
\mathcal{F}^{\prime} & =\{\emptyset,\{2\},\{1,3\},\{1,2,3\}\}
\end{aligned}
$$

You may assume that both \mathcal{F} and \mathcal{F}^{\prime} are σ-fields.
(a) Show that $\mathcal{F} \cup \mathcal{F}^{\prime}$ is not a σ-field.
(b) Let $X: \Omega \rightarrow \mathbb{R}$ be defined by

$$
X(n)= \begin{cases}1 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ 1 & \text { if } n=3\end{cases}
$$

Is X measurable with respect to \mathcal{F} ? Is X measurable with respect to \mathcal{F}^{\prime} ?
2. Let Ω be any set. Let I be any set and for each $i \in I$ let \mathcal{F}_{i} be a σ-field on Ω. Prove that $\cap_{i \in I} \mathcal{F}_{i}$ is a σ-field on Ω.
3. Let $\Omega=\{0,1\}^{\mathbb{N}}$, and let us write each $\omega \in \Omega$ as a sequence: $\omega=\omega_{1} \omega_{2} \omega_{3} \ldots$ where $\omega_{i} \in\{0,1\}$. Let $\mathcal{F}=\sigma\left(\left\{\omega ; \omega_{n}=C\right\} ; n \in \mathbb{N}, C \in\{0,1\}\right)$.
For each $n \in \mathbb{N}$ let $X_{n}: \Omega \rightarrow \mathbb{R}$ be given by $X_{n}(\omega)=\omega_{n}$ and define

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

You can think of this setting as follows. We toss a coin infinitely many times. We set $X_{i}=0$ if the $i^{\text {th }}$ flip is a head and $X_{i}=1$ is the $i^{\text {th }}$ flip is a tail. Then Ω is the set of all possible outcomes and \mathcal{F} is smallest σ-field for which, for each $i \in \mathbb{N}$, the event that the $i^{\text {th }}$ flip is a head (resp. tail) is measurable. Then, S_{n} is the total number of tails in the first n tosses.
Let $p \in[0,1]$.
(a) Prove that $\left\{\frac{S_{n}}{n} \leq p\right\}$ is \mathcal{F} measurable. (You may assume that linear combinations of measurable functions are measurable.)
(b) Let $m \in \mathbb{N}$. Prove that $\left\{\sup _{n \geq m} \frac{S_{n}}{n} \leq p\right\}$ and $\left\{\sup _{n \geq m} \frac{S_{n}}{n}<p\right\}$ are \mathcal{F} measurable.
(c) Prove that $\left\{\limsup _{n \rightarrow \infty} \frac{S_{n}}{n}=p\right\}$ is \mathcal{F} measurable.

Suppose additionally that $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure, under which the X_{i} are independent and identically distributed with $\mathbb{P}\left[X_{1}=0\right]=\mathbb{P}\left[X_{1}=1\right]=\frac{1}{2}$.
(d) Calculate $\mathbb{E}\left[S_{2} \mid \sigma\left(X_{1}\right)\right]$ and $\mathbb{E}\left[S_{2}^{2} \mid \sigma\left(X_{1}\right)\right]$.
(e) Let $n \in \mathbb{N}$. Calculate $\mathbb{E}\left[X_{1} \mid \sigma\left(S_{n}\right)\right]$.
4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X \in \mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ-field of \mathcal{F}.
(a) Prove that $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$ almost surely.
(b) Let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Prove that there exists $c \in \mathbb{R}$ such that $\mathbb{E}\left[X \mid \mathcal{F}_{0}\right]=c$ almost surely. Hence, show that $c=\mathbb{E}[X]$.
5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X, Y \in \mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ-field of \mathcal{F}. Suppose that $\mathbb{E}[X \mid \mathcal{G}]=Y$ and $\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[Y^{2}\right]$. Prove that $X=Y$ almost surely.

Problem Sheet 2

1. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an iid sequence of random variables such that $\mathbb{P}\left[X_{1}=-1\right]=\mathbb{P}\left[X_{1}=1\right]=\frac{1}{2}$. Let

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Let $\mathcal{F}_{n}=\sigma\left(X_{i} ; i \leq n\right)$.
(a) Show that \mathcal{F}_{n} is a filtration and that S_{n} is a \mathcal{F}_{n} martingale.
(b) State, with proof, which of the following processes are \mathcal{F}_{n} martingales:
(i) S_{n}^{2}
(ii) $S_{n}^{2}-n$
(iii) $\frac{S_{n}}{n}$

Which of the above are submartingales?
2. Let X_{0}, X_{1}, \ldots be a sequence of \mathcal{L}^{1} random variables. Let \mathcal{F}_{n} be a filtration and suppose that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=a X_{n}+b X_{n-1}$ for all $n \in \mathbb{N}$, where $a, b>0$ and $a+b=1$.
Find a value of $\alpha \in \mathbb{R}$ for which $S_{n}=\alpha X_{n}+X_{n-1}$ is an \mathcal{F}_{n} martingale.
3. At time 0 , an urn contains 1 black ball and 1 white ball. At each time $n=1,2,3, \ldots$, a ball is chosen from the urn and returned to the urn. At the same time, a new ball of the same colour as the chosen ball is added to the urn. Just after time n, there are $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of black balls added into the urn at or before time n. Let

$$
M_{n}=\frac{B_{n}+1}{n+2}
$$

be the proportion of balls in the urn that are black, at time n. Note that $M_{n} \in[0,1]$.
(a) Show that, relative to a natural filtration that you should specify, M_{n} is a martingale.
(b) Calculate the probability that the first k balls drawn are all black and that the next j balls drawn are all white.
(c) Show that $\mathbb{P}\left[B_{n}=k\right]=\frac{1}{n+1}$ for all $0 \leq k \leq n$, and deduce that $\lim _{n \rightarrow \infty} \mathbb{P}\left[M_{n} \leq p\right]=p$ for all $p \in[0,1]$.
(d) Let T be the number of balls drawn until the first black ball appears. Show that T is a stopping time and use the Optional Stopping Theorem to show that $\mathbb{E}\left[\frac{1}{T+2}\right]=\frac{1}{4}$.
4. Let S and T be stopping times with respect to the filtration \mathcal{F}_{n}.
(a) Show that $\min (S, T)$ and $\max (S, T)$ are stopping times.
(b) Suppose $S \leq T$. Is it necessarily true that $T-S$ is a stopping time?
5. Suppose that we repeatedly toss a fair coin, writing H for heads and T for tails. What is the expected number of tosses until we have seen the pattern HTHT for the first time?
Give an example of a four letter pattern of $\{H, T\}$ that has the maximal expected number of tosses, of any four letter pattern, until it is seen.
6. Let $m \in \mathbb{N}$ and $m \geq 2$. At time $n=0$, an urn contains $2 m$ balls, of which m are red and m are blue. At each time $n=1, \ldots, 2 m$ we draw a single ball from the urn; we do not replace it. Therefore, at time n the urn contains $2 m-n$ balls.
Let N_{n} denote the number of red balls remaining in the urn at time n. For $n=0, \ldots, 2 m-1$ let

$$
P_{n}=\frac{N_{n}}{2 m-n}
$$

be the fraction of red balls remaining after time n. Let $\mathcal{G}_{n}=\sigma\left(N_{i} ; i \leq n\right)$.
(a) Show that P_{n} is a \mathcal{G}_{n} martingale.
(b) Let T be the first time at which the ball that we draw is red. Note that $T<2 m$, because the urn initially contains at least 2 red balls. Show that the probability that the $(T+1)^{\text {st }}$ ball is red is $\frac{1}{2}$.

Problem Sheet 3

1. You play a game by betting on outcome of i.i.d. random variables $X_{n}, n \in \mathbb{Z}^{+}$, where

$$
\mathbb{P}\left[X_{n}=1\right]=p, \quad \mathbb{P}\left[X_{n}=-1\right]=q=1-p, \quad \frac{1}{2}<p<1
$$

Let Z_{n} be your fortune at time n, that is $Z_{n}=Z_{0}+\sum_{j=1}^{n} C_{j} X_{j}$. The bet C_{n} you place on game n must be in ($0, Z_{n-1}$) (i.e. you cannot borrow money to place bets). Your objective is to maximise the expected 'interest rate' $\mathbb{E}\left[\log \left(Z_{N} / Z_{0}\right)\right]$, where N (the length of the game) and Z_{0} (your initial fortune) are both fixed. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Show that if C is a previsible strategy, then $\log Z_{n}-n \alpha$ is a supermartingale, where

$$
\alpha=p \log p+q \log q+\log 2
$$

and deduce that $\mathbb{E} \log \left(Z_{n} / Z_{0}\right) \leq N \alpha$.
Can you find a strategy such that $\log Z_{n}-n \alpha$ is a martingale?
2. Let \mathcal{F}_{n} be a filtration. Suppose T is a stopping time such that for some $K \geq 1$ and $\epsilon>0$ we have, for all $n \geq 0$, almost surely

$$
\mathbb{P}\left[T \leq n+K \mid \mathcal{F}_{n}\right] \geq \epsilon
$$

(a) Prove by induction that for all $m \in \mathbb{N}, \mathbb{P}[T \geq m K] \leq(1-\epsilon)^{m}$.
(b) Hence show that $\mathbb{E}[T]<\infty$.
3. Let X_{1}, X_{2}, \ldots be a sequence of iid random variables with

$$
\mathbb{P}\left[X_{1}=1\right]=p, \quad \mathbb{P}\left[X_{1}=-1\right]=q, \quad \text { where } 0<p=1-q<1
$$

and suppose that $p \neq q$. Let $a, b \in \mathbb{N}$ with $0<a<b$, and let

$$
S_{n}=a+X_{1}+\ldots+X_{n}, \quad T=\inf \left\{n \geq 0 ; S_{n}=0 \text { or } S_{n}=b\right\}
$$

Let $\mathcal{F}_{n}=\sigma\left(X_{i} ; i \leq n\right)$.
(a) Deduce from the previous question that $\mathbb{E}[T]<\infty$.
(b) Show that

$$
M_{n}=\left(\frac{q}{p}\right)^{S_{n}}, \quad N_{n}=S_{n}-n(p-q)
$$

are both \mathcal{F}_{n} martingales.
(c) Calculate $\mathbb{E}\left[S_{T}\right], \mathbb{P}\left[S_{T}=0\right]$ and hence calculate $\mathbb{E}[T]$.
4. Let X_{1}, X_{2}, \ldots be strictly positive iid random variables such that $\mathbb{E}\left[X_{1}\right]=1$ and $\mathbb{P}\left[X_{1}=1\right]<1$.
(a) Show that $M_{n}=\prod_{i=1}^{n} X_{i}$ is a martingale relative to a natural filtration that you should specify.
(b) Deduce that there exists a real valued random variable L such that $M_{n} \rightarrow L$ almost surely as $n \rightarrow \infty$.
(c) Show that $\mathbb{P}[L=0]=1$.

Hint: Argue by contradiction and note that if $M_{n}, M_{n+1} \in(c-\epsilon, c+\epsilon)$ then $X_{n+1} \in\left(\frac{c-\epsilon}{c+\epsilon}, \frac{c+\epsilon}{c-\epsilon}\right)$.
(d) Use the Strong Law of Large Numbers to show that there exists $c \in \mathbb{R}$ such that $\frac{1}{n} \log M_{n} \rightarrow c$ almost surely $n \rightarrow \infty$. Use Jensen's inequality to show that $c<0$.
5. Show that a set \mathcal{C} of random variables is uniformly integrable if either:
(a) There exists a random variable Y such that $\mathbb{E}[|Y|]<\infty$ and $|X| \leq Y$ for all $X \in \mathcal{C}$.
(b) There exists $p>1$ and $A<\infty$ such that $\mathbb{E}\left[|X|^{p}\right] \leq A$ for all $X \in \mathcal{C}$.
6. Let Z_{n} be a Galton-Watson process with offspring distribution G (which takes value in $0,1, \ldots$), where $\mathbb{E}[G]=\mu>1$ and $\operatorname{var}[G]=\sigma^{2}<\infty$. Set $M_{n}=\frac{Z_{n}}{\mu^{n}}$, and use the filtration from lecture notes. Show that M_{n} is a martingale. Using induction, find a formula $\mathbb{E}\left[M_{n}^{2}\right]$ in terms of n, μ and σ. Hence, show that $\sup _{n \in \mathbb{N}} \mathbb{E}\left[M_{n}^{2}\right]<\infty$ and that M_{n} converges almost surely and in L^{1} as $n \rightarrow \infty$. Deduce that the limit M_{∞} satisfies $\mathbb{P}\left[M_{\infty}>0\right]>0$.

