Problem Sheet 1

1. Let $\Omega = \{1, 2, 3\}$. Let

$$\mathcal{F} = \{ \emptyset, \{1\}, \{2,3\}, \{1,2,3\} \},$$

$$\mathcal{F}' = \{ \emptyset, \{2\}, \{1,3\}, \{1,2,3\} \}.$$

You may assume that both \mathcal{F} and \mathcal{F}' are σ -fields.

- (a) Show that $\mathcal{F} \cup \mathcal{F}'$ is not a σ -field.
- (b) Let $X: \Omega \to \mathbb{R}$ be defined by

$$X(n) = \begin{cases} 1 & \text{if } n = 1\\ 2 & \text{if } n = 2\\ 1 & \text{if } n = 3 \end{cases}$$

Is X measurable with respect to \mathcal{F} ? Is X measurable with respect to \mathcal{F}' ?

- 2. Let Ω be any set. Let I be any set and for each $i \in I$ let \mathcal{F}_i be a σ -field on Ω . Prove that $\bigcap_{i \in I} \mathcal{F}_i$ is a σ -field on Ω .
- 3. Let $\Omega = \{0,1\}^{\mathbb{N}}$, and let us write each $\omega \in \Omega$ as a sequence: $\omega = \omega_1 \omega_2 \omega_3 \dots$ where $\omega_i \in \{0,1\}$. Let $\mathcal{F} = \sigma(\{\omega; \omega_n = C\}; n \in \mathbb{N}, C \in \{0,1\}).$

For each $n \in \mathbb{N}$ let $X_n : \Omega \to \mathbb{R}$ be given by $X_n(\omega) = \omega_n$ and define

$$S_n = \sum_{i=1}^n X_i.$$

You can think of this setting as follows. We toss a coin infinitely many times. We set $X_i = 0$ if the i^{th} flip is a head and $X_i = 1$ is the i^{th} flip is a tail. Then Ω is the set of all possible outcomes and \mathcal{F} is smallest σ -field for which, for each $i \in \mathbb{N}$, the event that the i^{th} flip is a head (resp. tail) is measurable. Then, S_n is the total number of tails in the first n tosses.

Let $p \in [0, 1]$.

- (a) Prove that $\{\frac{S_n}{n} \leq p\}$ is \mathcal{F} measurable. (You may assume that linear combinations of measurable functions are measurable.)
- (b) Let $m \in \mathbb{N}$. Prove that $\{\sup_{n \ge m} \frac{S_n}{n} \le p\}$ and $\{\sup_{n \ge m} \frac{S_n}{n} < p\}$ are \mathcal{F} measurable.
- (c) Prove that $\{\limsup_{n\to\infty}\frac{S_n}{n}=p\}$ is \mathcal{F} measurable.

Suppose additionally that $\mathbb{P} : \mathcal{F} \to [0, 1]$ is a probability measure, under which the X_i are independent and identically distributed with $\mathbb{P}[X_1 = 0] = \mathbb{P}[X_1 = 1] = \frac{1}{2}$.

- (d) Calculate $\mathbb{E}[S_2|\sigma(X_1)]$ and $\mathbb{E}[S_2^2|\sigma(X_1)]$.
- (e) Let $n \in \mathbb{N}$. Calculate $\mathbb{E}[X_1 | \sigma(S_n)]$.
- 4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ -field of \mathcal{F} .
 - (a) Prove that $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[X]$ almost surely.
 - (b) Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Prove that there exists $c \in \mathbb{R}$ such that $\mathbb{E}[X|\mathcal{F}_0] = c$ almost surely. Hence, show that $c = \mathbb{E}[X]$.
- 5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X, Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ -field of \mathcal{F} . Suppose that $\mathbb{E}[X | \mathcal{G}] = Y$ and $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$. Prove that X = Y almost surely.

Problem Sheet 2

1. Let $(X_n)_{n\in\mathbb{N}}$ be an iid sequence of random variables such that $\mathbb{P}[X_1=-1]=\mathbb{P}[X_1=1]=\frac{1}{2}$. Let

$$S_n = \sum_{i=1}^n X_i$$

Let $\mathcal{F}_n = \sigma(X_i; i \leq n)$.

- (a) Show that \mathcal{F}_n is a filtration and that S_n is a \mathcal{F}_n martingale.
- (b) State, with proof, which of the following processes are \mathcal{F}_n martingales:

(i)
$$S_n^2$$
 (ii) $S_n^2 - n$ (iii) $\frac{S_n}{n}$

Which of the above are submartingales?

- 2. Let X_0, X_1, \ldots be a sequence of \mathcal{L}^1 random variables. Let \mathcal{F}_n be a filtration and suppose that $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = aX_n + bX_{n-1}$ for all $n \in \mathbb{N}$, where a, b > 0 and a + b = 1. Find a value of $\alpha \in \mathbb{R}$ for which $S_n = \alpha X_n + X_{n-1}$ is an \mathcal{F}_n martingale.
- 3. At time 0, an urn contains 1 black ball and 1 white ball. At each time $n = 1, 2, 3, \ldots$, a ball is chosen from the urn and returned to the urn. At the same time, a new ball of the same colour as the chosen ball is added to the urn. Just after time n, there are n + 2 balls in the urn, of which $B_n + 1$ are black, where B_n is the number of black balls added into the urn at or before time n. Let

$$M_n = \frac{B_n + 1}{n+2}$$

be the proportion of balls in the urn that are black, at time n. Note that $M_n \in [0, 1]$.

- (a) Show that, relative to a natural filtration that you should specify, M_n is a martingale.
- (b) Calculate the probability that the first k balls drawn are all black and that the next j balls drawn are all white.
- (c) Show that $\mathbb{P}[B_n = k] = \frac{1}{n+1}$ for all $0 \le k \le n$, and deduce that $\lim_{n \to \infty} \mathbb{P}[M_n \le p] = p$ for all $p \in [0, 1]$.
- (d) Let T be the number of balls drawn until the first black ball appears. Show that T is a stopping time and use the Optional Stopping Theorem to show that $\mathbb{E}[\frac{1}{T+2}] = \frac{1}{4}$.
- 4. Let S and T be stopping times with respect to the filtration \mathcal{F}_n .
 - (a) Show that $\min(S, T)$ and $\max(S, T)$ are stopping times.
 - (b) Suppose $S \leq T$. Is it necessarily true that T S is a stopping time?
- 5. Suppose that we repeatedly toss a fair coin, writing H for heads and T for tails. What is the expected number of tosses until we have seen the pattern HTHT for the first time?

Give an example of a four letter pattern of $\{H, T\}$ that has the maximal expected number of tosses, of any four letter pattern, until it is seen.

6. Let $m \in \mathbb{N}$ and $m \ge 2$. At time n = 0, an urn contains 2m balls, of which m are red and m are blue. At each time $n = 1, \ldots, 2m$ we draw a single ball from the urn; we do not replace it. Therefore, at time n the urn contains 2m - n balls.

Let N_n denote the number of red balls remaining in the urn at time n. For $n = 0, \ldots, 2m - 1$ let

$$P_n = \frac{N_n}{2m - n}$$

be the fraction of red balls remaining after time n. Let $\mathcal{G}_n = \sigma(N_i; i \leq n)$.

- (a) Show that P_n is a \mathcal{G}_n martingale.
- (b) Let T be the first time at which the ball that we draw is red. Note that T < 2m, because the urn initially contains at least 2 red balls. Show that the probability that the $(T+1)^{st}$ ball is red is $\frac{1}{2}$.

Problem Sheet 3

1. You play a game by betting on outcome of i.i.d. random variables $X_n, n \in \mathbb{Z}^+$, where

$$\mathbb{P}[X_n = 1] = p, \quad \mathbb{P}[X_n = -1] = q = 1 - p, \quad \frac{1}{2}$$

Let Z_n be your fortune at time n, that is $Z_n = Z_0 + \sum_{j=1}^n C_j X_j$. The bet C_n you place on game n must be in $(0, Z_{n-1})$ (i.e. you cannot borrow money to place bets). Your objective is to maximise the expected 'interest rate' $\mathbb{E}[\log(Z_N/Z_0)]$, where N (the length of the game) and Z_0 (your initial fortune) are both fixed. Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that if C is a previsible strategy, then $\log Z_n - n\alpha$ is a supermartingale, where

$$\alpha = p\log p + q\log q + \log 2,$$

and deduce that $\mathbb{E}\log(Z_n/Z_0) \leq N\alpha$.

Can you find a strategy such that $\log Z_n - n\alpha$ is a martingale?

2. Let \mathcal{F}_n be a filtration. Suppose T is a stopping time such that for some $K \ge 1$ and $\epsilon > 0$ we have, for all $n \ge 0$, almost surely

$$\mathbb{P}\left[T \le n + K \,|\, \mathcal{F}_n\right] \ge \epsilon.$$

- (a) Prove by induction that for all $m \in \mathbb{N}$, $\mathbb{P}[T \ge mK] \le (1 \epsilon)^m$.
- (b) Hence show that $\mathbb{E}[T] < \infty$.
- 3. Let X_1, X_2, \ldots be a sequence of iid random variables with

$$\mathbb{P}[X_1 = 1] = p, \quad \mathbb{P}[X_1 = -1] = q, \quad \text{where } 0$$

and suppose that $p \neq q$. Let $a, b \in \mathbb{N}$ with 0 < a < b, and let

$$S_n = a + X_1 + \ldots + X_n, \quad T = \inf\{n \ge 0; S_n = 0 \text{ or } S_n = b\}.$$

- Let $\mathcal{F}_n = \sigma(X_i; i \leq n)$.
- (a) Deduce from the previous question that $\mathbb{E}[T] < \infty$.
- (b) Show that

$$M_n = \left(\frac{q}{p}\right)^{S_n}, \quad N_n = S_n - n(p-q)$$

are both \mathcal{F}_n martingales.

- (c) Calculate $\mathbb{E}[S_T]$, $\mathbb{P}[S_T = 0]$ and hence calculate $\mathbb{E}[T]$.
- 4. Let X_1, X_2, \ldots be strictly positive iid random variables such that $\mathbb{E}[X_1] = 1$ and $\mathbb{P}[X_1 = 1] < 1$.
 - (a) Show that $M_n = \prod_{i=1}^n X_i$ is a martingale relative to a natural filtration that you should specify.
 - (b) Deduce that there exists a real valued random variable L such that $M_n \to L$ almost surely as $n \to \infty$.
 - (c) Show that $\mathbb{P}[L=0]=1$. Hint: Argue by contradiction and note that if $M_n, M_{n+1} \in (c-\epsilon, c+\epsilon)$ then $X_{n+1} \in (\frac{c-\epsilon}{c+\epsilon}, \frac{c+\epsilon}{c-\epsilon})$.
 - (d) Use the Strong Law of Large Numbers to show that there exists $c \in \mathbb{R}$ such that $\frac{1}{n} \log M_n \to c$ almost surely $n \to \infty$. Use Jensen's inequality to show that c < 0.
- 5. Show that a set \mathcal{C} of random variables is uniformly integrable if either:
 - (a) There exists a random variable Y such that $\mathbb{E}[|Y|] < \infty$ and $|X| \leq Y$ for all $X \in \mathcal{C}$.
 - (b) There exists p > 1 and $A < \infty$ such that $\mathbb{E}[|X|^p] \leq A$ for all $X \in \mathcal{C}$.
- 6. Let Z_n be a Galton-Watson process with offspring distribution G (which takes value in 0, 1, ...), where $\mathbb{E}[G] = \mu > 1$ and $\operatorname{var}[G] = \sigma^2 < \infty$. Set $M_n = \frac{Z_n}{\mu^n}$, and use the filtration from lecture notes. Show that M_n is a martingale. Using induction, find a formula $\mathbb{E}[M_n^2]$ in terms of n, μ and σ . Hence, show that $\sup_{n \in \mathbb{N}} \mathbb{E}[M_n^2] < \infty$ and that M_n converges almost surely and in L^1 as $n \to \infty$. Deduce that the limit M_∞ satisfies $\mathbb{P}[M_\infty > 0] > 0$.